Skip to content
Last updated

Network Analysis

This notebook runs network analysis of the table specified by the input_table parameter.

Assumed Input

For input_table , this notebook assumes a transition matrix that consists of source, target, and weight/count columns. A sample table:

sourcetargetweight/count
google.com/learn10
google.com/7.354033
NULL/5.698033
/about/about4.249822
NULL/press_release_jp4.034131

Expected Outputs

This notebook outputs visualization of transitions. Supported network visualization methods:

  • Directed Graph Visualization using networkx. Graph nodes are weighted and connected based on PageRank.
  • Sankey Diagram Visualization using Plotly.

Some sample network analysis visualizations are as follows:

Workflow Example

Find a sample workflow here in Treasure Boxes.

+network_analysis:
  ipynb>:
    notebook: network_analysis
    input_table: ml_datasets.transition_matrix

Parameters

Parameter NameParameter on ConsoleDescriptionDefault Value
docker.task_nameDocker Task MemTask memory size. Available values are 64g, 128g (default), 256g, 384g, or 512g depending on your contracted tiers.128g
input_tableInput TableSpecify a TD table used for analysis as dbname.table_name.-
limitLimitMaximum number of edges to search.1000