# Time Series Forecasting Time series forecasting is the task of fitting a model to historical, time-stamped data to predict future values. This notebook trains time-series models and forecasts future values using [FLAML](https://microsoft.github.io/FLAML/). The supported models are as follows: * [Random Forest](https://en.wikipedia.org/wiki/Random_forest) * [Extra Trees](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.md) * [LightGBM](https://lightgbm.readthedocs.io/) * [XGBoost](https://en.wikipedia.org/wiki/XGBoost) * [Prophet](https://facebook.github.io/prophet) * [ARIMA](https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average) * [SARIMAX](https://www.statsmodels.org/stable/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.md) This notebook also runs additional EDA steps and hold-out tests. ### Assumed Input Table This notebook assumes the following table format as the input of training. | **tstamp** | **..** | **value** | | --- | --- | --- | | 2022/04/21 10:00 | .. | 50 | | 2022/04/21 10:00 | .. | 30 | | 2022/04/21 11:00 | .. | 70 | | 2022/04/21 11:00 | .. | 30 | | 2022/04/21 12:00 | .. | 100 | | 2022/04/21 12:00 | .. | 30 | By default, we assume tstamp_column="tstamp" and target_column="value" but you can specify any column names for them. Optionally, you can provide [exogenous variables](https://timeseriesreasoning.com/contents/exogenous-and-endogenous-variables/). When forecasting [daily store sales of a drug store chain](https://www.kaggle.com/competitions/rossmann-store-sales/) for instance, you can specify exogenous_columns: weather, promotions, store_type as auxiliary features explaining daily sales. | **tstamp** | **weather** | **promotions** | **store_type** | **sales** | | --- | --- | --- | --- | --- | | 1960-12-01 | cloudy | 2 | city_large | 459 | | 1961-01-01 | sunny | 1 | contry_small | 935 | | ... | ... | | | | | | | | | | | ... | | | | | | 1965-12-01 | rainy | 0 | city_small | 886 | ### Sample Output If forecast_length=30 is specified, +30 further records to training data are forecasted. On the other hand, test_table is provided, forecast for the test data. The test_table must at least have tstamp_column, "tstamp" by default setting. A target_column, "value" by the default, is attached to the output_table. Note pesudo_tstamp is used and resulted in addition to them if tstamp_column does not have valid datetime values. | **tstamp** | **value** | | --- | --- | | 1960-12-01 | 0.29304519295692444 | | 1961-01-01 | 0.00487339636310935 | | ... | ... | | 1965-12-01 | 0.5266873240470886 | The visualization of show forecasted results is as follows: ![](/assets/72061491.f86a6dc8602721837e43b7c44d7179d7564b702ff905e73ef0ada9babe5af4c1.3cb60505.png) ![](/assets/72061490.61770e0241024ecabb344fea215601a93a19e55b47898848f5c0eda98eaaec88.3cb60505.png) Workflow Example Find a sample workflow [here in Treasure Boxes](https://github.com/treasure-data/treasure-boxes/blob/automl/machine-learning-box/automl/ts_forecast.dig). +run_ts_forecast:   ipynb>:     notebook: ts_forecast     train_table: ml_datasets.ts_airline     tstamp_column: period     forecast_length: 30     output_table: ml_test.ts_airline_predicted ### Parameters | Parameter name | Parameter on Console | Description | Default Value | | --- | --- | --- | --- | | docker.task_mem | Docker Task Mem | Task memory size. Available values are 64g, 128g (default), 256g, 384g, or 512g depending on your contracted tiers | 128g | | train_table | Train Table | specify a TD table used for training as dbname.table_name | - | | forecast_length | Forecast Length | length of forecasting output, either test_table or forecast_length is required | - | | forecast_freq | Forecast Freq | Explicit frequency for forecasting. Accepted values: D - daily, W - weekly, M - monthly, Q - quarterly, Y - yearly. If not specified, the value is inferred from the data. | - | | test_table | Test Table | TD table name used for prediction. Either test_table or forecast_length is required | - | | tstamp_column | Tstamp Column | A timestamp column to sort time series data | tstamp | | target_column | Target Column | column name used for the label | value | | output_table | Output Table | TD table name to export the prediction result | - | | output_mode | Output Mode | Output mode for exporting output_table: overwrite/replace or append. Usually no need to specify and "append" for semi-realtime prediction. | overwrite | | exogenous_columns | Exogenous Columns | columns that can be used as prediction input. Can use "*" to select all columns in the train_table | - | | ignore_columns | Ignore Columns | columns to ignore as exogenous variables | time | | estimators | Estimators | Estimators used for timeseries forecasting. Supported estimators: prophet,arima,lgbm | prophet,arima,lgbm,xgboost,xgb_limitdepth | | time_limit | Time Limit | soft limit for training time budget in seconds | 60 * 60 | | sampling_threshold | Sampling Threshold | threshold used for sampling training data | 10_000_000 | | hide_table_contents | Hide Table Contents | suppress showing table contents | false | | calibration | Calibration | If true, the output value will be calibrated. | false |