# Gluon Predict This notebook is used for prediction using a prediction model built by *gluon_train* notebook. ### Sample Output If the same column name to label that is used in training (e.g., y) exists in *input_table* , prediction result is resulted in *predicted_y* with *predicted* prefix_. If the label column does not exist in *input_table* , prediction is resulted in *y* column. The columns *predicted_proba* and *predicted_probabilities* are results for binary or multiclass classifications. For binary classification, *predict_proba* is probability of positive class. You can get the probability of a negative class by 1.0 - *predict_proba*. For multiclass classification, *predict_proba* is probability of predicted class. | y | predicted_y | predicted_proba | predicted_probabilities | | --- | --- | --- | --- | | yes | no | 0.29304519295692444 | {"no": 0.706954836845398, "yes": 0.29304519295692444} | | no | no | 0.00487339636310935 | {"no": 0.9951266050338745, "yes": 0.00487339636310935} | | ... | ... | ... | ... | | yes | yes | 0.5266873240470886 | {"no": 0.4733126759529114, "yes": 0.5266873240470886} | If *rowid_column* is provided, it only appends prediction results to the *rowid* column and the resulting size of table will be small. It is assumed that *user_id* or *product_id* is unique for the *rowid_column*. ### Workflow Example For a sample workflow, see [Treasure Boxes](https://github.com/treasure-data/treasure-boxes/blob/automl/machine-learning-box/automl/ml_experiment.dig). ```yaml +gluon_predict: ml_predict>: notebook: gluon_predict model_name: gluon_model input_table: ml_datasets.bank_marketing_test output_table: ml_test.predicted ``` ### Parameters | Parameter name | Parameter on Console | Description | Default Value | | --- | --- | --- | --- | | docker.task_mem | Docker Task Mem | Task memory size. Available values are 64g, 128g (default), 256g, 384g, or 512g depending on your contracted tiers | 128g | | model_name | Model Name | Prediction model name | - | | input_table | Input Table | TD table name used for test data | - | | output_table | Output Table | TD table name to export the prediction result | - | | output_mode | Output Mode | Output mode for exporting *output_table:* overwrite or replace or append. Usually, there is no need to specify and append for semi-realtime prediction with *rowid_filter* | overwrite | | ignore_columns | Ignore Columns | Columns to ignore when building a prediction model | time | | rowid_column | Rowid Column | The *rowid* (primary key) column. Note that when *rowid_column* is specified, only rowid column and prediction result columns are displayed in the output table. | None | | rowid_filter | Rowid Filter | Filtering rows for prediction by *rowid* column values | None | | export_leaderboard | Export Leaderboard | Export leaderboard as a TD table, if specified | None | | export_feature_importance | Export Feature Importance | Export feature importance as a TD table, if specified | None | | hide_table_contents | Hide Table Contents | Suppress showing table contents | false | | shared_model | Shared Model | Specify a shared model UUID | None | | audience_name | Audience Name | Audience parent (master) segment name to merge an attribute table | None | | foreign_key | Foreign Key | Foreign key in an Audience parent (master) table to merge an attribute table | None |